
Teléfono: +34 876 553 510
Email: ebolea@unizar.es
Dirección: c/Pedro Cerbuna 12, Universidad de Zaragoza, Facultad de Ciencias, Departamento de Química Analítica – Zaragoza (España)
SOBRE MÍ
Eduardo Bolea Fernández obtuvo su Licenciatura y Máster en Química por la Universidad de Zaragoza, España. Llevó a cabo su investigación de doctorado en la Universidad de Gante, Bélgica, y obtuvo su título de Doctor en 2017. Su doctorado estaba enfocado en el desarrollo de nuevos métodos para el análisis elemental e isotópico de ultra-trazas utilizando espectrometría de masas-ICP en tándem (ICP-MS/MS). En octubre de 2017, Eduardo obtuvo una beca de investigación postdoctoral (BOF-UGent) centrada en el análisis isotópico de mercurio de alta precisión utilizando espectrometría de masas-ICP multi-colector con el objetivo de descifrar su ciclo biogeoquímico. En abril de 2018, ganó el Premio Internacional 2018 IUPAC-Solvay para Jóvenes Químicos entregado a las mejores tesis doctorales en ciencias químicas a nivel mundial. En noviembre de 2019, comenzó una beca de investigación postdoctoral junior (FWO) basada en el desarrollo de nuevos métodos analíticos y su aplicación en metalómica y nanotecnología. En enero de 2022, ganó el prestigioso premio “Young Scientist Winter Conference Award in Plasma Spectrochemistry” por sus contribuciones en este campo. En noviembre de 2022, comenzó una beca de investigación postdoctoral senior (FWO) enfocada en el análisis individual de células. En enero de 2023, fue galardonado con un contrato Ramón y Cajal (Ministerio de Ciencia e Innovación, Gobierno de España).
Hasta ahora, Eduardo es (co-)autor de 39 publicaciones en revistas internacionales y su trabajo ha sido presentado en >50 charlas en conferencias internacionales y workshops.
PUBLICACIONES
2025
Bazo, Antonio; Bolea-Fernandez, Eduardo; Rua-Ibarz, Ana; Aramendía, Maite; Resano, Martín
En: Anal. Chem., 2025, ISSN: 1520-6882.
@article{nokey,
title = {Ions with Ions, Entities with Entities: A Proof-of-Concept Study Using the SELM-1 Yeast Certified Reference Material for Intra- and Extracellular Se Quantification via Single-Cell ICP-Mass Spectrometry},
author = {Antonio Bazo and Eduardo Bolea-Fernandez and Ana Rua-Ibarz and Maite Aramendía and Martín Resano},
url = {https://pubs.acs.org/doi/10.1021/acs.analchem.5c01588},
doi = {https://doi.org/10.1021/acs.analchem.5c01588},
issn = {1520-6882},
year = {2025},
date = {2025-06-07},
urldate = {2025-06-07},
journal = {Anal. Chem.},
abstract = {In this work, two novel nanoparticle (NP)-based calibration strategies, external calibration and a relative method, have been explored for single-cell ICP-mass spectrometry (SC-ICP-MS) analysis. The fundamental principle of these methods is to rely on individual entities (well-characterized NPs of the target analyte) for calibration rather than on ionic standard solutions. The performance of the NP-based calibration approaches has been compared to that of the reference method (particle size with AuNP standards). In addition to the intracellular Se content (mass per individual cell), the extracellular Se (dissolved fraction) was also determined directly and simultaneously using the average background from the SC-ICP-MS time-resolved signal. The figures-of-merit of the methods developed have been evaluated by relying on the analysis of the SELM-1 cell-certified reference material, consisting of Se-enriched yeast cells, and certified for its total Se content (intracellular + extracellular Se). All methods successfully determined the Se elemental contents, but an improvement in accuracy and precision was observed for the NP-based methods compared to the reference one. Furthermore, the NP-based methods were found to be less time-consuming, more straightforward, and more user-friendly in terms of calculations. These results open new avenues for calibration in quantitative SC-ICP-MS analysis and call for a fundamental change in the methodology, where the determination of ionic contents is based on the use of ionic standard solutions for calibration, while the determination of elemental contents in discrete micro/nanoentities, such as cells, should ideally be based on calibration using standard entities, thus avoiding the need to calculate a transport efficiency coefficient.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Rodler-Rørbo, Alexandra; Baragona, Anthony J.; Verbeemen, Eliah J.; Sørensen, Lasse Vilien; Çakmakoğlu, Berk; Helvaci, Cahit; Bolea-Fernandez, Eduardo; Rua-Ibarz, Ana; Vanhaecke, Frank; Becker, Hilary; Artioli, Gilberto; Zabrana, Lilli; Debaille, Vinciane; Mattielli, Nadine; Goderis, Steven; Claeys, Philippe
Cinnabar for Roman Ephesus: Material quality, processing and provenance Artículo de revista
En: Journal of Archaeological Science, vol. 173, pp. 106122, 2025, ISSN: 0305-4403.
@article{RODLERRORBO2025106122,
title = {Cinnabar for Roman Ephesus: Material quality, processing and provenance},
author = {Alexandra Rodler-Rørbo and Anthony J. Baragona and Eliah J. Verbeemen and Lasse Vilien Sørensen and Berk Çakmakoğlu and Cahit Helvaci and Eduardo Bolea-Fernandez and Ana Rua-Ibarz and Frank Vanhaecke and Hilary Becker and Gilberto Artioli and Lilli Zabrana and Vinciane Debaille and Nadine Mattielli and Steven Goderis and Philippe Claeys},
url = {https://www.sciencedirect.com/science/article/pii/S0305440324001900},
doi = {https://doi.org/10.1016/j.jas.2024.106122},
issn = {0305-4403},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {Journal of Archaeological Science},
volume = {173},
pages = {106122},
abstract = {Ephesus was an important harbor city that flourished during the Roman period and ancient texts mention Almadén in Spain and the Cilbian fields of Ephesus as important cinnabar sources in antiquity. This work investigates whether imported cinnabar was used and whether this could be related to changes in painting activities over time. Microscopic analysis indicates a consistent preparation of cinnabar, hinting at a uniform source material quality or processing technique. However, the use of cinnabar varies among the architectural structures studied, indicating a plurality of painting techniques. A few of the analyzed cinnabar samples overlap with Turkish- and Balkan reference Pb isotope ratios; three samples from tabernas, however, deviate from this. The Hg isotope ratios reveal that cinnabar from carbonate-hosted deposits was likely used, and that processing of cinnabar included heating as suggested by ancient texts. Most notably, a correlation exists between the geochemical data and the painting technique – shifts in sourcing and cinnabar usage are potentially assignable to building chronology and/or usage. Through the lens of material provenance and processing, Ephesian cinnabar brings the organization of pigment trade into focus.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Sullivan, Kaj V.; Moser, Katharina; Costas-Rodríguez, Marta; Bolea-Fernandez, Eduardo; Vanhaecke, Frank
High-precision Cu isotopic analysis of human dietary Cu sources via multi-collector ICP-mass spectrometry Artículo de revista
En: Food Chemistry, vol. 470, pp. 142673, 2025, ISSN: 0308-8146.
@article{SULLIVAN2025142673,
title = {High-precision Cu isotopic analysis of human dietary Cu sources via multi-collector ICP-mass spectrometry},
author = {Kaj V. Sullivan and Katharina Moser and Marta Costas-Rodríguez and Eduardo Bolea-Fernandez and Frank Vanhaecke},
url = {https://www.sciencedirect.com/science/article/pii/S0308814624043231},
doi = {https://doi.org/10.1016/j.foodchem.2024.142673},
issn = {0308-8146},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {Food Chemistry},
volume = {470},
pages = {142673},
abstract = {The disruption of Cu homeostasis is associated with the pathogenesis of many diseases and can result in alterations in Cu isotope fractionation. Changes in the Cu isotope ratio (65Cu/63Cu) of body fluids and tissues have been observed in liver disorders, cancers, and other diseases, displaying diagnostic/prognostic potential. However, it is not entirely clear whether certain physiological or lifestyle factors may also influence the bodily Cu isotopic composition, potentially obfuscating the signature of the pathology. To ascertain whether differences exist between food products, the Cu isotopic composition of 29 significant dietary Cu sources has been determined for the first time. The general enrichment of Cu and its heavy isotope, 65Cu, in legumes, nuts, and seeds (major Cu sources in plant-based diets) was revealed, suggesting that individuals with plant-based diets may have a bodily Cu isotopic composition offset from that of individuals with omnivorous diets, thus requiring controlling for in study design.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Bazo, Antonio; Bolea-Fernandez, Eduardo; Billimoria, Kharmen; Rua-Ibarz, Ana; Aramendía, Maite; Menero-Valdés, Paula; Morley, Jack; Neves, Sara; Sánchez-Cachero, Armando; Goenaga-Infante, Heidi; Resano, Martín
A novel particle mass calibration strategy for the quantification of AuNPs in single cancer cells via laser ablation ICP-mass spectrometry. A case study Artículo de revista
En: J. Anal. At. Spectrom., pp. -, 2025.
@article{D5JA00253B,
title = {A novel particle mass calibration strategy for the quantification of AuNPs in single cancer cells via laser ablation ICP-mass spectrometry. A case study},
author = {Antonio Bazo and Eduardo Bolea-Fernandez and Kharmen Billimoria and Ana Rua-Ibarz and Maite Aramendía and Paula Menero-Valdés and Jack Morley and Sara Neves and Armando Sánchez-Cachero and Heidi Goenaga-Infante and Martín Resano},
url = {http://dx.doi.org/10.1039/D5JA00253B},
doi = {10.1039/D5JA00253B},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {J. Anal. At. Spectrom.},
pages = {-},
publisher = {The Royal Society of Chemistry},
abstract = {Laser ablation ICP-mass spectrometry (LA-ICP-MS) has developed as a powerful tool for elemental quantitative analysis of individual cells, assuring that the content of each cell is analyzed individually. However, this technique is still limited by the difficulties associated with calibration using solid standards. This work proposes a particle mass calibration strategy that is independent of both the properties and thickness of the gelatin films used for calibration, overcoming a significant drawback of previously established methods. The fundamental principle of this strategy relies on the individual ablation of nanoparticles (NPs) of well-characterized size that are embedded in the films, so that their mass can be directly used for calibration without the need to calculate their exact concentration within the gelatin. The performance of the newly developed method was compared to that of the previously reported approaches (ionic and particle number calibration) in terms of linearity and homogeneity between different films prepared from the same gelatin solution. As a case study, the three calibration strategies were used for the quantitative analysis of HeLa cancer cells exposed to AuNPs. In parallel, in-suspension single-cell (SC) ICP-MS Au data were obtained and used as reference for comparison with the three LA-SC-ICP-MS strategies. The results obtained with the novel particle mass approach demonstrated better accuracy and repeatability over three different working sessions, addressing key limitations and providing a robust and reliable method for quantitative LA-SC-ICP-MS analysis. The particle mass method holds promise for quantitative LA-ICP-MS analysis of samples beyond NP-exposed cells, such as biological tissues.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Bazo, Antonio; López-Villellas, Lorién; Mataloni, Matilde; Bolea-Fernandez, Eduardo; Rua-Ibarz, Ana; Grotti, Marco; Aramendía, Maite; Resano, Martín
Improving detection and figures of merit in single-particle inductively coupled plasma-mass spectrometry via transient event heights Artículo de revista
En: Analytica Chimica Acta, vol. 1378, pp. 344694, 2025, ISSN: 0003-2670.
@article{BAZO2025344694,
title = {Improving detection and figures of merit in single-particle inductively coupled plasma-mass spectrometry via transient event heights},
author = {Antonio Bazo and Lorién López-Villellas and Matilde Mataloni and Eduardo Bolea-Fernandez and Ana Rua-Ibarz and Marco Grotti and Maite Aramendía and Martín Resano},
url = {https://www.sciencedirect.com/science/article/pii/S0003267025010888},
doi = {https://doi.org/10.1016/j.aca.2025.344694},
issn = {0003-2670},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {Analytica Chimica Acta},
volume = {1378},
pages = {344694},
abstract = {Background
Single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) is a powerful method for characterizing micro- and nanoparticulate materials. The technique primarily relies on the linear relationship between the integrated intensities of individual events (peak areas) and the analyte mass, though transit times (peak widths) have also been used for quantitative purposes. This work (1) evaluates the potential of using peak heights as analytical signals in SP-ICP-MS, (2) introduces a new method for determining peak heights, and (3) explores scenarios in which peak height offers added value over the commonly used SP-ICP-MS signals.
Results
A new method was proposed to estimate peak height values in SP-ICP-MS accurately. The cumulative intensity across consecutive dwell times was modeled using a third-degree polynomial, from which the adjusted peak height was derived. This approach reduces the uncertainty associated with using raw maximum intensity values, yielding NP distributions comparable to those obtained via integrated intensities. The effect of dwell time on peak height was also evaluated. An optimal range (50 μs–200 μs) was identified, where a linear relationship was observed between the peak height and the square of the NP diameter. Within this range, peak height showed the lowest bias when characterizing smaller NPs, indicating the potential to improve the limit of quantification (LoQ). Additionally, peak heights proved helpful in determining the limit of detection (LoD) and setting appropriate threshold values for data processing, thereby helping to flag incorrect resultsand addressing a challenge in SP-ICP-MS analysis.
Significance
This is the first study to evaluate peak height as an analytical signal in SP-ICP-MS. The results highlight its advantages in specific applications, such as sizing NPs near the LoD, and in supporting the more reliable use of other signals, such as peak areas, by helping to identify incorrect threshold selection that could lead to biased distributions. Finally, monitoring peak heights allows for a more realistic and assumption-free determination of the LoD.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) is a powerful method for characterizing micro- and nanoparticulate materials. The technique primarily relies on the linear relationship between the integrated intensities of individual events (peak areas) and the analyte mass, though transit times (peak widths) have also been used for quantitative purposes. This work (1) evaluates the potential of using peak heights as analytical signals in SP-ICP-MS, (2) introduces a new method for determining peak heights, and (3) explores scenarios in which peak height offers added value over the commonly used SP-ICP-MS signals.
Results
A new method was proposed to estimate peak height values in SP-ICP-MS accurately. The cumulative intensity across consecutive dwell times was modeled using a third-degree polynomial, from which the adjusted peak height was derived. This approach reduces the uncertainty associated with using raw maximum intensity values, yielding NP distributions comparable to those obtained via integrated intensities. The effect of dwell time on peak height was also evaluated. An optimal range (50 μs–200 μs) was identified, where a linear relationship was observed between the peak height and the square of the NP diameter. Within this range, peak height showed the lowest bias when characterizing smaller NPs, indicating the potential to improve the limit of quantification (LoQ). Additionally, peak heights proved helpful in determining the limit of detection (LoD) and setting appropriate threshold values for data processing, thereby helping to flag incorrect resultsand addressing a challenge in SP-ICP-MS analysis.
Significance
This is the first study to evaluate peak height as an analytical signal in SP-ICP-MS. The results highlight its advantages in specific applications, such as sizing NPs near the LoD, and in supporting the more reliable use of other signals, such as peak areas, by helping to identify incorrect threshold selection that could lead to biased distributions. Finally, monitoring peak heights allows for a more realistic and assumption-free determination of the LoD.