-
Proyectos
PROY_E17_24. Micromuestreo y alta resolución temporal y espacial para el análisis clínico mínimamente invasivo y el análisis de células individuales

- Fecha de inicio 01-01-2024
- Fecha de finalización 31-12-2026
- Investigador Principal: Martín Resano y Eduardo Bolea Fernández
- Tipo: Desarrollo de proyectos de I+D+i en líneas prioritarias y de carácter multidisciplinar para el periodo 2024-2026. Diputación General de Aragón
Resumen: El proyecto persigue el desarrollo de nuevas metodologías analíticas que permitan por un lado el análisis cuantitativo de dried blood spots y, por otro, el de células individuales, en ambos casos mediante la técnica de ICP-MS y usando nuevas estrategias de micromuestreo. Para conseguir mejorar estos métodos y extender su rango de aplicación es preciso explorar tanto el empleo de dispositivos novedosos que permitan la manipulación de muestras en el rango de los micro y nanolitros, como el desarrollo de enfoques alternativos de introducción de muestras basadas en la microfluídica.
El empleo de un sistema dispensador automatizado de nanolíquidos puede ayudar al desarrollo de nuevos métodos analíticos para la determinación de bajas concentraciones de analitos en todo tipo de muestras micro/nano, incluidas las células. Estos dispositivos son capaces de dispensar volúmenes controlados y asegurar la presencia de células en cada uno de ellos con alta eficiencia, lo que facilita mucho el análisis de células individuales. Asimismo, estos dispositivos permiten la deposición precisa de nanovolúmenes de sangre u otros fluidos sobre soportes DBS, garantizando una distribución más uniforme y controlada de la muestra. Empleando estos dispositivos, los DBS también pueden funcionalizarse con enzimas, marcadores o anticuerpos, lo que facilita su posterior análisis y abre el campo a la determinación de otras especies más allá de las elementales.
El empleo de chips microfluídicos como medio de introducción de muestras puede considerarse un enfoque elegante para superar el problema de la introducción de muestras de una sola entidad. Estos chips ofrecen la posibilidad de encapsular células antes de introducirlas en el ICP, aumentando así las posibilidades de que las células resistan al proceso de introducción como entidades intactas. También es esperable que las eficiencias de introducción sean mucho mayores que las comparadas con otros enfoques alternativos. Finalmente, la funcionalización de estos dispositivos permite realizar operaciones adicionales, incluidas reacciones y separaciones. De esta manera se aportan nuevas vías para el análisis en línea de diversos tipos de células y/o para el marcaje con anticuerpos específicos, lo que puede permitir estudiar diferentes tipos de células, estados y funciones en suspensiones celulares.
PUBLICACIONES
2024
Bazo, Antonio; Bolea-Fernandez, Eduardo; Rua-Ibarz, Ana; Aramendía, Maite; Resano, Martín
Intensity- and time-based strategies for micro/nano-sizing via single-particle ICP-mass spectrometry: A comparative assessment using Au and SiO2 as model particles Artículo de revista
En: Analytica Chimica Acta, vol. 1331, pp. 343305, 2024, ISSN: 0003-2670.
@article{BAZO2024343305,
title = {Intensity- and time-based strategies for micro/nano-sizing via single-particle ICP-mass spectrometry: A comparative assessment using Au and SiO2 as model particles},
author = {Antonio Bazo and Eduardo Bolea-Fernandez and Ana Rua-Ibarz and Maite Aramendía and Martín Resano},
url = {https://www.sciencedirect.com/science/article/pii/S0003267024011061},
doi = {https://doi.org/10.1016/j.aca.2024.343305},
issn = {0003-2670},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Analytica Chimica Acta},
volume = {1331},
pages = {343305},
abstract = {Background
Single-particle ICP-mass spectrometry (SP-ICP-MS) is a powerful method for micro/nano-particle (MNP) sizing. Despite the outstanding evolution of the technique in the last decade, most studies still rely on traditional approaches based on (1) the use of integrated intensity as the analytical signal and (2) the calculation of the transport efficiency (TE). However, the increasing availability of MNP standards and advancements in hardware and software have unveiled new venues for MNP sizing, including TE-independent and time-based approaches. This work systematically examines these different methodologies to identify and summarize their strengths and weaknesses, thus helping to determine their preferred application areas.
Results
Different SP-ICP-MS methods for MNP sizing were assessed using AuNPs (20–70 nm) and SiO2MNPs (100–1000 nm). Among TE-dependent approaches, the particle frequency method was characterized by larger uncertainties than the particle size method. The results of the latter were dependent on the appropriate selection of the reference MNP, making the use of multiple reference MNPs recommended. TE-independent methods were based on external (linear and polynomial) calibrations and a relative approach. These methods exhibited the lowest uncertainties of all the strategies evaluated. External calibrations benefited from simpler calculations, but their application could be hindered by a lack of reference MNPs within the desired size range or by the need for interpolations outside the calibration range. Finally, transit time signals are directly proportional to the MNP size rather than its mass. The time-based method demonstrated adequate performance for sizing AuNPs but failed when sizing the largest SiO2MNPs (1000 nm).
Significance and novelty
This work provides further insights into the application of different SP-ICP-MS methodologies for MNP sizing. Both TE-independent approaches and the monitoring of the transit time as the analytical signal are underused strategies; in this context, a Python script was developed for accurate transit time measurement. After 20 years of development, a quantitative comparison of the different methodologies, including the most novel approaches, is deemed necessary for further growth on solid theoretical ground.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Single-particle ICP-mass spectrometry (SP-ICP-MS) is a powerful method for micro/nano-particle (MNP) sizing. Despite the outstanding evolution of the technique in the last decade, most studies still rely on traditional approaches based on (1) the use of integrated intensity as the analytical signal and (2) the calculation of the transport efficiency (TE). However, the increasing availability of MNP standards and advancements in hardware and software have unveiled new venues for MNP sizing, including TE-independent and time-based approaches. This work systematically examines these different methodologies to identify and summarize their strengths and weaknesses, thus helping to determine their preferred application areas.
Results
Different SP-ICP-MS methods for MNP sizing were assessed using AuNPs (20–70 nm) and SiO2MNPs (100–1000 nm). Among TE-dependent approaches, the particle frequency method was characterized by larger uncertainties than the particle size method. The results of the latter were dependent on the appropriate selection of the reference MNP, making the use of multiple reference MNPs recommended. TE-independent methods were based on external (linear and polynomial) calibrations and a relative approach. These methods exhibited the lowest uncertainties of all the strategies evaluated. External calibrations benefited from simpler calculations, but their application could be hindered by a lack of reference MNPs within the desired size range or by the need for interpolations outside the calibration range. Finally, transit time signals are directly proportional to the MNP size rather than its mass. The time-based method demonstrated adequate performance for sizing AuNPs but failed when sizing the largest SiO2MNPs (1000 nm).
Significance and novelty
This work provides further insights into the application of different SP-ICP-MS methodologies for MNP sizing. Both TE-independent approaches and the monitoring of the transit time as the analytical signal are underused strategies; in this context, a Python script was developed for accurate transit time measurement. After 20 years of development, a quantitative comparison of the different methodologies, including the most novel approaches, is deemed necessary for further growth on solid theoretical ground.