-
Proyectos
Interreg POCTEFA EFA 099/01. NanoLyme: Hacia un nuevo diagnóstico de la enfermedad de Lyme a través de la nanotecnología, la espectrometría atómica y la inteligencia artificial
- Fecha de inicio 01-03-2024
- Fecha de finalización 28-02-2027
- Investigador Principal: Martín Resano y Eduardo Bolea Fernández
- Tipo: Interreg VI-A España-Francia-Andorra (POCTEFA 2021-2027)
- Página web: https://nanolyme.eu/
Resumen: La enfermedad de Lyme es una enfermedad emergente que está suscitando una preocupación creciente a nivel clínico en toda Europa. Se considera endémica en las regiones POCTEFA y su incremento se debe, entre otros factores, al cambio climático que hace que los vectores que la transmiten se encuentren activos durante más tiempo, tal y como recoge el informe "El Cambio climático es los Pirineos: impactos, vulnerabilidades y adaptación", elaborado por el OPCC y la CTP. La Resolución del Parlamento Europeo sobre esta enfermedad, 2018/2774 (RSP), analiza la situación en Europa señalando que "un diagnóstico precoz más fiable de la enfermedad de Lyme reducirá significativamente el número de casos de dicha enfermedad en fase avanzada, mejorándose con ello la calidad de vida de los pacientes" y pidiendo "una mayor cooperación internacional en la investigación sobre la enfermedad de Lyme", Nuestro proyecto recoge esta llamada capitalizando la experiencia previa adquirida en el diagnóstico de otra enfermedad (Wilson) en el proyecto previo DBS e incorporando al socio competente en Lyme en zona POCTEFA (CH Lannemezan). El proyecto persigue el desarrollo de un nuevo método de diagnóstico de la enfermedad de Lyme a partir de un enfoque novedoso y único, que en lugar de intentar detectar los anticuerpos generados por el paciente (a veces, prácticamente inexistentes), detectará las propias bacterias inoculadas que causan la enfermedad. Este método sólo se puede desarrollar a partir de la cooperación transfronteriza de los socios participantes, y su experiencia complementaria en el uso de la nanotecnología como herramienta facilitadora, de la técnica ICP-MS y de la inteligencia artificial aplicada al diagnóstico clínico. El resultado será un método robusto de diagnóstico de Lyme que será directamente transferido a los principales hospitales de las regiones POCTEFA involucradas para su aplicación inmediata al final del proyecto.
El proyecto NanoLyme ha sido cofinanciado al 65% por la Unión Europea a través del Programa Interreg VI-A España-Francia-Andorra (POCTEFA 2021-2027). El objetivo del POCTEFA es reforzar la integración económica y social de la zona fronteriza España-Francia-Andorra.
PUBLICACIONES
2024
Bazo, Antonio; Bolea-Fernandez, Eduardo; Rua-Ibarz, Ana; Aramendía, Maite; Resano, Martín
Intensity- and time-based strategies for micro/nano-sizing via single-particle ICP-mass spectrometry: A comparative assessment using Au and SiO2 as model particles Artículo de revista
En: Analytica Chimica Acta, vol. 1331, pp. 343305, 2024, ISSN: 0003-2670.
@article{BAZO2024343305,
title = {Intensity- and time-based strategies for micro/nano-sizing via single-particle ICP-mass spectrometry: A comparative assessment using Au and SiO2 as model particles},
author = {Antonio Bazo and Eduardo Bolea-Fernandez and Ana Rua-Ibarz and Maite Aramendía and Martín Resano},
url = {https://www.sciencedirect.com/science/article/pii/S0003267024011061},
doi = {https://doi.org/10.1016/j.aca.2024.343305},
issn = {0003-2670},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Analytica Chimica Acta},
volume = {1331},
pages = {343305},
abstract = {Background
Single-particle ICP-mass spectrometry (SP-ICP-MS) is a powerful method for micro/nano-particle (MNP) sizing. Despite the outstanding evolution of the technique in the last decade, most studies still rely on traditional approaches based on (1) the use of integrated intensity as the analytical signal and (2) the calculation of the transport efficiency (TE). However, the increasing availability of MNP standards and advancements in hardware and software have unveiled new venues for MNP sizing, including TE-independent and time-based approaches. This work systematically examines these different methodologies to identify and summarize their strengths and weaknesses, thus helping to determine their preferred application areas.
Results
Different SP-ICP-MS methods for MNP sizing were assessed using AuNPs (20–70 nm) and SiO2MNPs (100–1000 nm). Among TE-dependent approaches, the particle frequency method was characterized by larger uncertainties than the particle size method. The results of the latter were dependent on the appropriate selection of the reference MNP, making the use of multiple reference MNPs recommended. TE-independent methods were based on external (linear and polynomial) calibrations and a relative approach. These methods exhibited the lowest uncertainties of all the strategies evaluated. External calibrations benefited from simpler calculations, but their application could be hindered by a lack of reference MNPs within the desired size range or by the need for interpolations outside the calibration range. Finally, transit time signals are directly proportional to the MNP size rather than its mass. The time-based method demonstrated adequate performance for sizing AuNPs but failed when sizing the largest SiO2MNPs (1000 nm).
Significance and novelty
This work provides further insights into the application of different SP-ICP-MS methodologies for MNP sizing. Both TE-independent approaches and the monitoring of the transit time as the analytical signal are underused strategies; in this context, a Python script was developed for accurate transit time measurement. After 20 years of development, a quantitative comparison of the different methodologies, including the most novel approaches, is deemed necessary for further growth on solid theoretical ground.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Single-particle ICP-mass spectrometry (SP-ICP-MS) is a powerful method for micro/nano-particle (MNP) sizing. Despite the outstanding evolution of the technique in the last decade, most studies still rely on traditional approaches based on (1) the use of integrated intensity as the analytical signal and (2) the calculation of the transport efficiency (TE). However, the increasing availability of MNP standards and advancements in hardware and software have unveiled new venues for MNP sizing, including TE-independent and time-based approaches. This work systematically examines these different methodologies to identify and summarize their strengths and weaknesses, thus helping to determine their preferred application areas.
Results
Different SP-ICP-MS methods for MNP sizing were assessed using AuNPs (20–70 nm) and SiO2MNPs (100–1000 nm). Among TE-dependent approaches, the particle frequency method was characterized by larger uncertainties than the particle size method. The results of the latter were dependent on the appropriate selection of the reference MNP, making the use of multiple reference MNPs recommended. TE-independent methods were based on external (linear and polynomial) calibrations and a relative approach. These methods exhibited the lowest uncertainties of all the strategies evaluated. External calibrations benefited from simpler calculations, but their application could be hindered by a lack of reference MNPs within the desired size range or by the need for interpolations outside the calibration range. Finally, transit time signals are directly proportional to the MNP size rather than its mass. The time-based method demonstrated adequate performance for sizing AuNPs but failed when sizing the largest SiO2MNPs (1000 nm).
Significance and novelty
This work provides further insights into the application of different SP-ICP-MS methodologies for MNP sizing. Both TE-independent approaches and the monitoring of the transit time as the analytical signal are underused strategies; in this context, a Python script was developed for accurate transit time measurement. After 20 years of development, a quantitative comparison of the different methodologies, including the most novel approaches, is deemed necessary for further growth on solid theoretical ground.