
Call: +34 876 553 510
Email: arua@unizar.es
Address: c/Pedro Cerbuna 12, Universidad de Zaragoza, Facultad de Ciencias, Departamento de Química Analítica – Zaragoza (Spain)
ABOUT ME
Ana María Rua Ibarz obtained her Bachelor and Master degrees in Chemistry from the University of Zaragoza (Zaragoza, Spain). She carried out her PhD research at Ghent University (Ghent, Belgium) focused on method development and applications of high-precision isotopic analysis of Hg using cold-vapor generation multi-collector ICP-mass spectrometry instrumentation (CVG-MC-ICP-MS), and he obtained her PhD degree in 2018. In May 2018, after a competitive selection procedure held among international researchers, Ana obtained a postdoctoral position at the Flemish Institute for Technological Research (VITO) in Mol (Belgium), for carrying out a research project intended to explore new analytical strategies for nanoparticle characterization. In March 2020, she started working as postdoctoral researcher at Ghent University on a project in collaboration with TotalEnergies (Feluy, Belgium). The project was based on method development for quantitative elemental and spatially resolved analysis of relevant samples in petrochemistry, such as catalysts, polymers and rocks via laser ablation ICP-MS (LA-ICP-MS). Since November 2022, she is working as postdoctoral researcher at the University of Zaragoza (Spain) after she was awarded a Marie Sklodowska-Curie (MSCA)-COFUND International Fellowship Programme for Talent Attraction to the Campus of International Excellence Campus Iberus. Her research project is entitled “Exploring new venues for the characterization of nanomaterials and microplastics via plasma spectroscopy”.
PUBLICATIONS
2025
Bazo, Antonio; Bolea-Fernandez, Eduardo; Rua-Ibarz, Ana; Aramendía, Maite; Resano, Martín
En: Anal. Chem., 2025, ISSN: 1520-6882.
@article{nokey,
title = {Ions with Ions, Entities with Entities: A Proof-of-Concept Study Using the SELM-1 Yeast Certified Reference Material for Intra- and Extracellular Se Quantification via Single-Cell ICP-Mass Spectrometry},
author = {Antonio Bazo and Eduardo Bolea-Fernandez and Ana Rua-Ibarz and Maite Aramendía and Martín Resano},
url = {https://pubs.acs.org/doi/10.1021/acs.analchem.5c01588},
doi = {https://doi.org/10.1021/acs.analchem.5c01588},
issn = {1520-6882},
year = {2025},
date = {2025-06-07},
urldate = {2025-06-07},
journal = {Anal. Chem.},
abstract = {In this work, two novel nanoparticle (NP)-based calibration strategies, external calibration and a relative method, have been explored for single-cell ICP-mass spectrometry (SC-ICP-MS) analysis. The fundamental principle of these methods is to rely on individual entities (well-characterized NPs of the target analyte) for calibration rather than on ionic standard solutions. The performance of the NP-based calibration approaches has been compared to that of the reference method (particle size with AuNP standards). In addition to the intracellular Se content (mass per individual cell), the extracellular Se (dissolved fraction) was also determined directly and simultaneously using the average background from the SC-ICP-MS time-resolved signal. The figures-of-merit of the methods developed have been evaluated by relying on the analysis of the SELM-1 cell-certified reference material, consisting of Se-enriched yeast cells, and certified for its total Se content (intracellular + extracellular Se). All methods successfully determined the Se elemental contents, but an improvement in accuracy and precision was observed for the NP-based methods compared to the reference one. Furthermore, the NP-based methods were found to be less time-consuming, more straightforward, and more user-friendly in terms of calculations. These results open new avenues for calibration in quantitative SC-ICP-MS analysis and call for a fundamental change in the methodology, where the determination of ionic contents is based on the use of ionic standard solutions for calibration, while the determination of elemental contents in discrete micro/nanoentities, such as cells, should ideally be based on calibration using standard entities, thus avoiding the need to calculate a transport efficiency coefficient.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Rodler-Rørbo, Alexandra; Baragona, Anthony J.; Verbeemen, Eliah J.; Sørensen, Lasse Vilien; Çakmakoğlu, Berk; Helvaci, Cahit; Bolea-Fernandez, Eduardo; Rua-Ibarz, Ana; Vanhaecke, Frank; Becker, Hilary; Artioli, Gilberto; Zabrana, Lilli; Debaille, Vinciane; Mattielli, Nadine; Goderis, Steven; Claeys, Philippe
Cinnabar for Roman Ephesus: Material quality, processing and provenance Journal Article
En: Journal of Archaeological Science, vol. 173, pp. 106122, 2025, ISSN: 0305-4403.
@article{RODLERRORBO2025106122,
title = {Cinnabar for Roman Ephesus: Material quality, processing and provenance},
author = {Alexandra Rodler-Rørbo and Anthony J. Baragona and Eliah J. Verbeemen and Lasse Vilien Sørensen and Berk Çakmakoğlu and Cahit Helvaci and Eduardo Bolea-Fernandez and Ana Rua-Ibarz and Frank Vanhaecke and Hilary Becker and Gilberto Artioli and Lilli Zabrana and Vinciane Debaille and Nadine Mattielli and Steven Goderis and Philippe Claeys},
url = {https://www.sciencedirect.com/science/article/pii/S0305440324001900},
doi = {https://doi.org/10.1016/j.jas.2024.106122},
issn = {0305-4403},
year = {2025},
date = {2025-01-01},
journal = {Journal of Archaeological Science},
volume = {173},
pages = {106122},
abstract = {Ephesus was an important harbor city that flourished during the Roman period and ancient texts mention Almadén in Spain and the Cilbian fields of Ephesus as important cinnabar sources in antiquity. This work investigates whether imported cinnabar was used and whether this could be related to changes in painting activities over time. Microscopic analysis indicates a consistent preparation of cinnabar, hinting at a uniform source material quality or processing technique. However, the use of cinnabar varies among the architectural structures studied, indicating a plurality of painting techniques. A few of the analyzed cinnabar samples overlap with Turkish- and Balkan reference Pb isotope ratios; three samples from tabernas, however, deviate from this. The Hg isotope ratios reveal that cinnabar from carbonate-hosted deposits was likely used, and that processing of cinnabar included heating as suggested by ancient texts. Most notably, a correlation exists between the geochemical data and the painting technique – shifts in sourcing and cinnabar usage are potentially assignable to building chronology and/or usage. Through the lens of material provenance and processing, Ephesian cinnabar brings the organization of pigment trade into focus.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Nakadi, Flávio V.; Garcia-Garcia, Alicia; Rua-Ibarz, Ana; Resano, Martín
LAMIS in the gas phase: A new approach for obtaining Ca elemental and isotopic information via CaF molecule formation Journal Article
En: Talanta, vol. 292, pp. 127920, 2025, ISSN: 0039-9140.
@article{NAKADI2025127920,
title = {LAMIS in the gas phase: A new approach for obtaining Ca elemental and isotopic information via CaF molecule formation},
author = {Flávio V. Nakadi and Alicia Garcia-Garcia and Ana Rua-Ibarz and Martín Resano},
url = {https://www.sciencedirect.com/science/article/pii/S0039914025004102},
doi = {https://doi.org/10.1016/j.talanta.2025.127920},
issn = {0039-9140},
year = {2025},
date = {2025-01-01},
journal = {Talanta},
volume = {292},
pages = {127920},
abstract = {This work introduces a novel method for generating the calcium monofluoride (CaF) diatomic molecule by adding the molecule-forming reagent in the gaseous phase (a methyl fluoride-argon mixture), in order to perform laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS) measurements. By optimizing the instrumental parameters, CaF molecule formation was successfully achieved within the plasma plume, upon ablation of dried liquid samples. The isotopic shift for the X2Σ→A2Π (0,1) CaF vibronic transition at 583.0 nm was calculated to be 292.3 pm. The method proved capable of providing quantitative information for determining calcium concentrations in real samples, such as tap water and skimmed milk, using internal standardization (with Sr as internal standard; limit of detection, LOD, 20 mg L−1) and isotope dilution (which can be applied from 400 mg L−1on), respectively. Partial least squares regression (PLS) analysis was employed to enhance the quality of the isotopic data. The Ca concentration found in the tap water was 47 ± 16 mg L−1 (reference flame atomic absorption spectrometry, FAAS, value: 59 ± 0.2 mg L−1), and 1100 ± 140 mg L−1 for the skimmed milk (reference FAAS value: 1240 ± 120 mg L−1). No significant difference between LIBS and FAAS results could be established using a t-test at the 95% confidence level. Overall, this novel approach allows for the determination of calcium in terms of both the elemental concentration and the isotopic composition, thus broadening the applicability of LIBS (e.g., for tracer experiments, besides the already mentioned application of isotope dilution).},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2024
Rua-Ibarz, Ana; Acker, Thibaut Van; Bolea-Fernandez, Eduardo; Boccongelli, Marina; Vanhaecke, Frank
A comparison of calibration strategies for quantitative laser ablation ICP-mass spectrometry (LA-ICP-MS) analysis of fused catalyst samples Journal Article
En: J. Anal. At. Spectrom., vol. 39, iss. 3, pp. 888-899, 2024.
@article{D3JA00271C,
title = {A comparison of calibration strategies for quantitative laser ablation ICP-mass spectrometry (LA-ICP-MS) analysis of fused catalyst samples},
author = {Ana Rua-Ibarz and Thibaut Van Acker and Eduardo Bolea-Fernandez and Marina Boccongelli and Frank Vanhaecke},
url = {http://dx.doi.org/10.1039/D3JA00271C},
doi = {10.1039/D3JA00271C},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {J. Anal. At. Spectrom.},
volume = {39},
issue = {3},
pages = {888-899},
publisher = {The Royal Society of Chemistry},
abstract = {In the field of petrochemistry, the quantitative determination of trace elements in catalysts is crucial for optimizing various types of processes. Catalyst poisoning, resulting from the presence of contaminants, can lead to decreased performance and efficiency, even when these are present at trace level only. Inductively coupled plasma-mass spectrometry (ICP-MS) is a powerful technique for trace elemental analysis, but its application to catalysts is challenging due to their physicochemical characteristics challenging straightforward dissolution. Laser ablation (LA) coupled to ICP-MS (LA-ICP-MS) has emerged as a valuable approach for direct analysis of solid samples. However, developing an appropriate calibration strategy for reliable quantitative LA-ICP-MS analysis of catalyst samples remains a challenge. In this work, different calibration strategies for quantitative LA-ICP-MS analysis of fused catalyst samples were evaluated. The traditional strategy relied on external calibration against certified reference materials (CRMs) combined with internal standardization and was considered the reference approach. When using this approach, the relative bias with respect to the reference value was found to be <15%. Two novel calibration strategies were introduced and compared: a so-called multi-signal calibration approach and a solution-based calibration approach. The multi-signal calibration strategy involved varying the laser repetition rate (20, 30, 40 and 50 Hz) or laser beam diameter (10, 12, 15 and 20 μm), allowing a calibration curve to be constructed by comparing the analytical signal intensity for a single solid CRM with that for the sample, thus partially overcoming the shortage of CRMs for quantitative LA-ICP-MS analysis. The solution-based calibration approach was used for quantitative multi-element analysis without the need for any solid standard and required only minor hardware modifications to accommodate the introduction of aqueous standard solutions for calibration. Various glass certified reference materials were used for method development, calibration, and validation purposes. Furthermore, two fused alumina catalyst samples (used in the context of petroleum refining processes) were successfully analyzed as a proof-of-concept application. For both the multi-signal (matrix-matched conditions) and the solution-based calibration approaches, the average relative bias between the experimentally determined and certified/reference concentrations varied between −9% and +7%.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Bolea-Fernandez, Eduardo; Rua-Ibarz, Ana; Anjos, Jorge Alves; Vanhaecke, Frank
En: Talanta, vol. 276, pp. 126210, 2024, ISSN: 0039-9140.
@article{BOLEAFERNANDEZ2024126210,
title = {Development and initial evaluation of a combustion-based sample introduction system for direct isotopic analysis of mercury in solid samples via multi-collector ICP-mass spectrometry},
author = {Eduardo Bolea-Fernandez and Ana Rua-Ibarz and Jorge Alves Anjos and Frank Vanhaecke},
url = {https://www.sciencedirect.com/science/article/pii/S0039914024005897},
doi = {https://doi.org/10.1016/j.talanta.2024.126210},
issn = {0039-9140},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Talanta},
volume = {276},
pages = {126210},
abstract = {High-precision isotopic analysis of mercury (Hg) using multi-collector ICP-mass spectrometry (MC-ICP-MS) is a powerful method for obtaining insight into the sources, pathways and sinks of this toxic metal. Modification of a commercially available mercury analyzer (Teledyne Leeman Labs, Hydra IIc – originally designed for quantification of Hg through sample combustion, collection of the Hg vapor on a gold amalgamator, subsequent controlled release of Hg and detection using cold vapor atomic absorption spectrometry CVAAS) enabled the system to be used for the direct high-precision Hg isotopic analysis of solid samples using MC-ICP-MS – i.e., without previous sample digestion and subsequent dilution. The changes made to the mercury analyzer did not compromise its (simultaneous) use for Hg quantification via CVAAS. The Hg vapor was mixed with a Tl-containing aerosol produced via pneumatic nebulization, creating wet plasma conditions, and enabling the use of Tl as an internal standard for correction of instrumental mass discrimination. Accurate and precise (0.10 ‰ 2SD, δ202Hg},
keywords = {},
pubstate = {published},
tppubtype = {article}
}