Call: +34 876 553 510
Email: ebolea@unizar.es
Address: c/Pedro Cerbuna 12, Universidad de Zaragoza, Facultad de Ciencias, Departamento de Química Analítica – Zaragoza (Spain)
ABOUT ME
Eduardo Bolea Fernández obtained his Bachelor and Master degrees in chemistry from the University of Zaragoza, Spain. He carried out PhD research at Ghent University, Belgium, and obtained his PhD degree in 2017. His PhD research focused on method development for ultra-trace elemental and isotopic analysis using tandem ICP-mass spectrometry (ICP-MS/MS). In October 2017, he got a postdoctoral research grant (BOF-UGent) focusing on high-precision isotopic analysis of mercury using multi-collector ICP-mass spectrometry for unravelling its biogeochemical cycle. In April 2018, he won the 2018 IUPAC-Solvay International Award for Young Chemists for the best PhD dissertation in the chemical sciences worldwide. In November 2019, he started a junior postdoctoral research grant (FWO) based on the development of new analytical methods and their application to metallomics and nanotechnology. In January 2022, he won the prestigious 2022 Young Scientist Winter Conference Award in Plasma Spectrochemistry for his contributions to the field of plasma spectrochemistry. In November 2022, he started a senior postdoctoral research grant (FWO) focusing on single-cell analysis in the biological sciences. In January 2023, he was awarded a 5-years Ramón y Cajal contract (Ministry of Science and Innovation, Spanish Government).
So far, Eduardo is (co)author of 39 publications in peer-reviewed international journals and his work has been presented in >50 lectures on international conferences and workshops.
PUBLICATIONS
2024
Suárez-Criado, Laura; Bolea-Fernandez, Eduardo; Abou-Zeid, Lana; Vandermeiren, Mathias; Rodríguez-González, Pablo; Alonso, Jose Ignacio Garcia; Vanhaecke, Frank
En: J. Anal. At. Spectrom., vol. 39, iss. 2, pp. 592-600, 2024.
@article{D3JA00414G,
title = {Extending the application range of Hg isotopic analysis to sub-μg L−1 levels using cold vapor generation multi-collector inductively coupled plasma-mass spectrometry with 1013 ohm Faraday cup amplifiers},
author = {Laura Suárez-Criado and Eduardo Bolea-Fernandez and Lana Abou-Zeid and Mathias Vandermeiren and Pablo Rodríguez-González and Jose Ignacio Garcia Alonso and Frank Vanhaecke},
url = {http://dx.doi.org/10.1039/D3JA00414G},
doi = {10.1039/D3JA00414G},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {J. Anal. At. Spectrom.},
volume = {39},
issue = {2},
pages = {592-600},
publisher = {The Royal Society of Chemistry},
abstract = {High-precision determination of the isotopic composition of mercury (Hg) is of paramount importance for unraveling its biogeochemical cycle and for identifying the origin of Hg in environmental compartments. Cold vapor generation multi-collector inductively coupled plasma-mass spectrometry (CVG-MC-ICP-MS) is the standard approach for such application. Cold vapor generation provides a high Hg introduction efficiency into the ICP, while chromatographic Hg isolation is not required as a result of the selective reaction between Hg2+ and SnCl2. For environmental or biota samples with low Hg concentrations, however, this approach still presents challenges and reliable measurements typically require a Hg concentration ≥1 μg L−1 in the solution analyzed. Recent improvements of MC-ICP-MS instrumentation, including the introduction of the so-called Jet interface and 1013 Ω Faraday cup amplifiers, enhance the signal-to-noise ratio. In this study, it was investigated to what extent this allows Hg isotopic analysis at lower concentration. Performance in Hg isotopic analysis was compared using two different sets of cones (standard vs. Jet), two plasma conditions (wet vs. dry) and two amplifier types (1011 Ω vs. 1013 Ω). Satisfactory accuracy and precision were achieved at a Hg concentration down to 0.1 μg L−1 in the solution measured when using Jet cones, dry plasma conditions, and the four available 1013 Ω amplifiers. The uncertainty expressed as 2SD for the δ202Hg values measured for the in-house standard solution was ±0.2‰ at 0.25 μg Hg L−1 and ± 0.3‰ at 0.1 μg Hg L−1. The method was subsequently applied to the analysis of real surface water samples contaminated with toxic metals.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Rua-Ibarz, Ana; Acker, Thibaut Van; Bolea-Fernandez, Eduardo; Boccongelli, Marina; Vanhaecke, Frank
A comparison of calibration strategies for quantitative laser ablation ICP-mass spectrometry (LA-ICP-MS) analysis of fused catalyst samples Journal Article
En: J. Anal. At. Spectrom., vol. 39, iss. 3, pp. 888-899, 2024.
@article{D3JA00271C,
title = {A comparison of calibration strategies for quantitative laser ablation ICP-mass spectrometry (LA-ICP-MS) analysis of fused catalyst samples},
author = {Ana Rua-Ibarz and Thibaut Van Acker and Eduardo Bolea-Fernandez and Marina Boccongelli and Frank Vanhaecke},
url = {http://dx.doi.org/10.1039/D3JA00271C},
doi = {10.1039/D3JA00271C},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {J. Anal. At. Spectrom.},
volume = {39},
issue = {3},
pages = {888-899},
publisher = {The Royal Society of Chemistry},
abstract = {In the field of petrochemistry, the quantitative determination of trace elements in catalysts is crucial for optimizing various types of processes. Catalyst poisoning, resulting from the presence of contaminants, can lead to decreased performance and efficiency, even when these are present at trace level only. Inductively coupled plasma-mass spectrometry (ICP-MS) is a powerful technique for trace elemental analysis, but its application to catalysts is challenging due to their physicochemical characteristics challenging straightforward dissolution. Laser ablation (LA) coupled to ICP-MS (LA-ICP-MS) has emerged as a valuable approach for direct analysis of solid samples. However, developing an appropriate calibration strategy for reliable quantitative LA-ICP-MS analysis of catalyst samples remains a challenge. In this work, different calibration strategies for quantitative LA-ICP-MS analysis of fused catalyst samples were evaluated. The traditional strategy relied on external calibration against certified reference materials (CRMs) combined with internal standardization and was considered the reference approach. When using this approach, the relative bias with respect to the reference value was found to be <15%. Two novel calibration strategies were introduced and compared: a so-called multi-signal calibration approach and a solution-based calibration approach. The multi-signal calibration strategy involved varying the laser repetition rate (20, 30, 40 and 50 Hz) or laser beam diameter (10, 12, 15 and 20 μm), allowing a calibration curve to be constructed by comparing the analytical signal intensity for a single solid CRM with that for the sample, thus partially overcoming the shortage of CRMs for quantitative LA-ICP-MS analysis. The solution-based calibration approach was used for quantitative multi-element analysis without the need for any solid standard and required only minor hardware modifications to accommodate the introduction of aqueous standard solutions for calibration. Various glass certified reference materials were used for method development, calibration, and validation purposes. Furthermore, two fused alumina catalyst samples (used in the context of petroleum refining processes) were successfully analyzed as a proof-of-concept application. For both the multi-signal (matrix-matched conditions) and the solution-based calibration approaches, the average relative bias between the experimentally determined and certified/reference concentrations varied between −9% and +7%.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Bolea-Fernandez, Eduardo; Rua-Ibarz, Ana; Anjos, Jorge Alves; Vanhaecke, Frank
En: Talanta, vol. 276, pp. 126210, 2024, ISSN: 0039-9140.
@article{BOLEAFERNANDEZ2024126210,
title = {Development and initial evaluation of a combustion-based sample introduction system for direct isotopic analysis of mercury in solid samples via multi-collector ICP-mass spectrometry},
author = {Eduardo Bolea-Fernandez and Ana Rua-Ibarz and Jorge Alves Anjos and Frank Vanhaecke},
url = {https://www.sciencedirect.com/science/article/pii/S0039914024005897},
doi = {https://doi.org/10.1016/j.talanta.2024.126210},
issn = {0039-9140},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Talanta},
volume = {276},
pages = {126210},
abstract = {High-precision isotopic analysis of mercury (Hg) using multi-collector ICP-mass spectrometry (MC-ICP-MS) is a powerful method for obtaining insight into the sources, pathways and sinks of this toxic metal. Modification of a commercially available mercury analyzer (Teledyne Leeman Labs, Hydra IIc – originally designed for quantification of Hg through sample combustion, collection of the Hg vapor on a gold amalgamator, subsequent controlled release of Hg and detection using cold vapor atomic absorption spectrometry CVAAS) enabled the system to be used for the direct high-precision Hg isotopic analysis of solid samples using MC-ICP-MS – i.e., without previous sample digestion and subsequent dilution. The changes made to the mercury analyzer did not compromise its (simultaneous) use for Hg quantification via CVAAS. The Hg vapor was mixed with a Tl-containing aerosol produced via pneumatic nebulization, creating wet plasma conditions, and enabling the use of Tl as an internal standard for correction of instrumental mass discrimination. Accurate and precise (0.10 ‰ 2SD, δ202Hg},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Freire, Bruna Moreira; Rua-Ibarz, Ana; Nakadi, Flávio Venâncio; Bolea-Fernandez, Eduardo; Barriuso-Vargas, Juan J.; Lange, Camila Neves; Aramendía, Maite; Batista, Bruno Lemos; Resano, Martín
Tracing isotopically labeled selenium nanoparticles in plants via single-particle ICP-mass spectrometry Journal Article
En: Talanta, vol. 277, pp. 126417, 2024, ISSN: 0039-9140.
@article{FREIRE2024126417,
title = {Tracing isotopically labeled selenium nanoparticles in plants via single-particle ICP-mass spectrometry},
author = {Bruna Moreira Freire and Ana Rua-Ibarz and Flávio Venâncio Nakadi and Eduardo Bolea-Fernandez and Juan J. Barriuso-Vargas and Camila Neves Lange and Maite Aramendía and Bruno Lemos Batista and Martín Resano},
url = {https://www.sciencedirect.com/science/article/pii/S0039914024007963},
doi = {https://doi.org/10.1016/j.talanta.2024.126417},
issn = {0039-9140},
year = {2024},
date = {2024-01-01},
journal = {Talanta},
volume = {277},
pages = {126417},
abstract = {Abstract
Agronomic biofortification using selenium nanoparticles (SeNPs) shows potential for addressing selenium deficiency but further research on SeNPs-plants interaction is required before it can be effectively used to improve nutritional quality. In this work, single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) was used for tracing isotopically labeled SeNPs (82SeNPs) in Oryza sativa L. tissues. For this purpose, SeNPs with natural isotopic abundance and 82SeNPs were synthesized by a chemical method. The NPs characterization by transmission electron microscopy (TEM) confirmed that enriched NPs maintained the basic properties of unlabeled NPs, showing spherical shape, monodispersity, and sizes in the nano-range (82.8 ± 6.6 nm and 73.2 ± 4.4 nm for SeNPs and 82SeNPs, respectively). The use of 82SeNPs resulted in an 11-fold enhancement in the detection power for ICP-MS analysis, accompanied by an improvement in the signal-to-background ratio and a reduction of the size limits of detection from 89.9 to 39.9 nm in SP-ICP-MS analysis. This enabled 82SeNPs to be tracked in O. sativa L. plants cultivated under foliar application of 82SeNPs. Tracing studies combining SP-ICP-MS and TEM-energy-dispersive X-ray spectroscopy data confirmed the uptake of intact 82SeNPs by rice leaves, with most NPs remaining in the leaves and very few particles translocated to shoots and roots. Translocation of Se from leaves to roots and shoots was found to be lower when applied as NPs compared to selenite application. From the size distributions, as obtained by SP-ICP-MS, it can be concluded that a fraction of the 82SeNPs remained within the same size range as that of the applied NP suspension, while other fraction underwent an agglomeration process in the leaves, as confirmed by TEM images. This illustrates the potential of SP-ICP-MS analysis of isotopically enriched 82SeNPs for tracing NPs in the presence of background elements within complex plant matrices, providing important information about the uptake, accumulation, and biotransformation of SeNPs in rice plants.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Agronomic biofortification using selenium nanoparticles (SeNPs) shows potential for addressing selenium deficiency but further research on SeNPs-plants interaction is required before it can be effectively used to improve nutritional quality. In this work, single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) was used for tracing isotopically labeled SeNPs (82SeNPs) in Oryza sativa L. tissues. For this purpose, SeNPs with natural isotopic abundance and 82SeNPs were synthesized by a chemical method. The NPs characterization by transmission electron microscopy (TEM) confirmed that enriched NPs maintained the basic properties of unlabeled NPs, showing spherical shape, monodispersity, and sizes in the nano-range (82.8 ± 6.6 nm and 73.2 ± 4.4 nm for SeNPs and 82SeNPs, respectively). The use of 82SeNPs resulted in an 11-fold enhancement in the detection power for ICP-MS analysis, accompanied by an improvement in the signal-to-background ratio and a reduction of the size limits of detection from 89.9 to 39.9 nm in SP-ICP-MS analysis. This enabled 82SeNPs to be tracked in O. sativa L. plants cultivated under foliar application of 82SeNPs. Tracing studies combining SP-ICP-MS and TEM-energy-dispersive X-ray spectroscopy data confirmed the uptake of intact 82SeNPs by rice leaves, with most NPs remaining in the leaves and very few particles translocated to shoots and roots. Translocation of Se from leaves to roots and shoots was found to be lower when applied as NPs compared to selenite application. From the size distributions, as obtained by SP-ICP-MS, it can be concluded that a fraction of the 82SeNPs remained within the same size range as that of the applied NP suspension, while other fraction underwent an agglomeration process in the leaves, as confirmed by TEM images. This illustrates the potential of SP-ICP-MS analysis of isotopically enriched 82SeNPs for tracing NPs in the presence of background elements within complex plant matrices, providing important information about the uptake, accumulation, and biotransformation of SeNPs in rice plants.
Bazo, Antonio; Bolea-Fernandez, Eduardo; Rua-Ibarz, Ana; Aramendía, Maite; Resano, Martín
En: Analytica Chimica Acta, vol. 1331, pp. 343305, 2024, ISSN: 0003-2670.
@article{BAZO2024343305,
title = {Intensity- and time-based strategies for micro/nano-sizing via single-particle ICP-mass spectrometry: A comparative assessment using Au and SiO2 as model particles},
author = {Antonio Bazo and Eduardo Bolea-Fernandez and Ana Rua-Ibarz and Maite Aramendía and Martín Resano},
url = {https://www.sciencedirect.com/science/article/pii/S0003267024011061},
doi = {https://doi.org/10.1016/j.aca.2024.343305},
issn = {0003-2670},
year = {2024},
date = {2024-01-01},
journal = {Analytica Chimica Acta},
volume = {1331},
pages = {343305},
abstract = {Background
Single-particle ICP-mass spectrometry (SP-ICP-MS) is a powerful method for micro/nano-particle (MNP) sizing. Despite the outstanding evolution of the technique in the last decade, most studies still rely on traditional approaches based on (1) the use of integrated intensity as the analytical signal and (2) the calculation of the transport efficiency (TE). However, the increasing availability of MNP standards and advancements in hardware and software have unveiled new venues for MNP sizing, including TE-independent and time-based approaches. This work systematically examines these different methodologies to identify and summarize their strengths and weaknesses, thus helping to determine their preferred application areas.
Results
Different SP-ICP-MS methods for MNP sizing were assessed using AuNPs (20–70 nm) and SiO2MNPs (100–1000 nm). Among TE-dependent approaches, the particle frequency method was characterized by larger uncertainties than the particle size method. The results of the latter were dependent on the appropriate selection of the reference MNP, making the use of multiple reference MNPs recommended. TE-independent methods were based on external (linear and polynomial) calibrations and a relative approach. These methods exhibited the lowest uncertainties of all the strategies evaluated. External calibrations benefited from simpler calculations, but their application could be hindered by a lack of reference MNPs within the desired size range or by the need for interpolations outside the calibration range. Finally, transit time signals are directly proportional to the MNP size rather than its mass. The time-based method demonstrated adequate performance for sizing AuNPs but failed when sizing the largest SiO2MNPs (1000 nm).
Significance and novelty
This work provides further insights into the application of different SP-ICP-MS methodologies for MNP sizing. Both TE-independent approaches and the monitoring of the transit time as the analytical signal are underused strategies; in this context, a Python script was developed for accurate transit time measurement. After 20 years of development, a quantitative comparison of the different methodologies, including the most novel approaches, is deemed necessary for further growth on solid theoretical ground.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Single-particle ICP-mass spectrometry (SP-ICP-MS) is a powerful method for micro/nano-particle (MNP) sizing. Despite the outstanding evolution of the technique in the last decade, most studies still rely on traditional approaches based on (1) the use of integrated intensity as the analytical signal and (2) the calculation of the transport efficiency (TE). However, the increasing availability of MNP standards and advancements in hardware and software have unveiled new venues for MNP sizing, including TE-independent and time-based approaches. This work systematically examines these different methodologies to identify and summarize their strengths and weaknesses, thus helping to determine their preferred application areas.
Results
Different SP-ICP-MS methods for MNP sizing were assessed using AuNPs (20–70 nm) and SiO2MNPs (100–1000 nm). Among TE-dependent approaches, the particle frequency method was characterized by larger uncertainties than the particle size method. The results of the latter were dependent on the appropriate selection of the reference MNP, making the use of multiple reference MNPs recommended. TE-independent methods were based on external (linear and polynomial) calibrations and a relative approach. These methods exhibited the lowest uncertainties of all the strategies evaluated. External calibrations benefited from simpler calculations, but their application could be hindered by a lack of reference MNPs within the desired size range or by the need for interpolations outside the calibration range. Finally, transit time signals are directly proportional to the MNP size rather than its mass. The time-based method demonstrated adequate performance for sizing AuNPs but failed when sizing the largest SiO2MNPs (1000 nm).
Significance and novelty
This work provides further insights into the application of different SP-ICP-MS methodologies for MNP sizing. Both TE-independent approaches and the monitoring of the transit time as the analytical signal are underused strategies; in this context, a Python script was developed for accurate transit time measurement. After 20 years of development, a quantitative comparison of the different methodologies, including the most novel approaches, is deemed necessary for further growth on solid theoretical ground.