-
Projects
PID2021-122455NB-I00. Microsampling for biomedical elemental analysis: make every droplet count (ANADROP)
- Start date: 01-09-2023
- End date: 31-08-2025
- Coordinator: Martín Resano
- Type: Proyectos de Generación de Conocimiento, Ministerio de Ciencia e Innovación
Summary: This project aims at developing new analytical methodologies for providing elemental and isotopic information from microsamples, which can be obtained in a minimally invasive way (e.g., dried matrix spots, DMSs), as well as from microentities (such as cells, nanoparticles, and micro/nanoplastics), in order to achieve entity-resolved information.
The methods developed should be simple and selective, requiring none or else minimal sample preparation (without digestions), since such methods avoid species interconversion, minimize risks of losses or contamination, and provide better limits of detection while ensuring a high sample throughput.
The hypothesis of the project is that atomic spectrometry techniques have experienced recent and significant improvements (e.g., faster acquisition capabilities, more potential to cope with spectral overlaps and capacities for new couplings, such as LA-ICP-MS/LIBS in tandem) that, together with recent advances in the production of DMSs of a constant and known volume, make it feasible to take microsampling in the biomedical field to the next level.
Thus, in this project, the most powerful trace elemental techniques (ICP-MS/MS, LA-ICP-MS/LIBS, and HR CS GFAAS) will be deployed, using state-of-the-art instrumentation, so it becomes therefore feasible to attain the specific goals pursued.
Key applications of interest in the biomedical field have been selected and will be investigated. The main focus of the project, however, will consist in building new approaches with a solid theoretical foundation that permit the acquisition of as much information as possible from minimal sample amounts, while enabling proper quantification.
The project will be developed around three different objectives: i) development of novel analytical strategies based on new instrumental configurations and couplings for the direct elemental and isotopic analysis of biomedical microsamples; ii) development of novel analytical strategies for minimally invasive analysis; and iii) development of methods based on time and/or spatially resolved information for the individual analysis of micro/nano entities.
Grant PID2021-122455NB-I00 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”.
PUBLICATIONS
2024
Aramendía, Maite; Souza, André L. M.; Nakadi, Flávio V.; Resano, Martín
En: J. Anal. At. Spectrom., vol. 39, pp. 767-779, 2024.
@article{D3JA00420A,
title = {Boron elemental and isotopic determination via the BF diatomic molecule using high-resolution continuum source graphite furnace molecular absorption spectrometry},
author = {Maite Aramendía and André L. M. Souza and Flávio V. Nakadi and Martín Resano},
url = {http://dx.doi.org/10.1039/D3JA00420A},
doi = {10.1039/D3JA00420A},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {J. Anal. At. Spectrom.},
volume = {39},
pages = {767-779},
publisher = {The Royal Society of Chemistry},
abstract = {Boron trace determination in biological materials is needed in different fields of application. Direct B determination by means of Graphite Furnace Atomic Absorption Spectrometry (SS-GFAAS) has been used in the past for this purpose, offering good detection limits hardly achievable by other techniques. However, such methods require the use of high atomization temperatures combined with large integration times to promote B atomization, which dramatically reduces the lifetime of the instrument's graphite parts. In this work, a new perspective for B determination by means of Graphite Furnace Molecular Absorption Spectrometry (GFMAS) is proposed. B was detected as the diatomic molecule BF (boron monofluoride), deploying a gas phase reaction with CH3F as fluorinating agent. Based on this strategy, a method for the direct determination of B in two biological certified reference materials (NIST SRM 1570a spinach leaves and NIST SRM 1573a tomato leaves) has been developed, providing similar detection capabilities to the GFAAS method (LOD of 0.24 ng) but requiring much milder furnace conditions. Moreover, the appearance of memory effects, very common in GFAAS methods, is also avoided with this method. Straightforward calibration with aqueous standard solutions was also found to be possible. To this end, a mixture of W (permanent), citric acid, and Ca as chemical modifiers was found to be essential for obtaining a reproducible and sufficiently sensitive signal for boron solutions, comparable to the signals obtained for the solid samples. With this method, accurate results were obtained for the direct analysis of both certified reference materials, provided that spectral interferences from the PO molecule were properly corrected. Precision values in the range of 15% RSD, as typically reported for direct solid sampling GFAAS, were found. Finally, and as an additional advantage of the GFMAS method, a large isotopic shift in the absorbance of the 10BF and 11BF molecules can be accurately monitored at a secondary transition for the BF molecule. This offers novel analytical possibilities for the method, which are also explored in this study. In this regard, control of the B concentration was found to be critical for obtaining accurate and precise isotope ratios for this element.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Suárez-Criado, Laura; Bolea-Fernandez, Eduardo; Abou-Zeid, Lana; Vandermeiren, Mathias; Rodríguez-González, Pablo; Alonso, Jose Ignacio Garcia; Vanhaecke, Frank
En: J. Anal. At. Spectrom., vol. 39, iss. 2, pp. 592-600, 2024.
@article{D3JA00414G,
title = {Extending the application range of Hg isotopic analysis to sub-μg L−1 levels using cold vapor generation multi-collector inductively coupled plasma-mass spectrometry with 1013 ohm Faraday cup amplifiers},
author = {Laura Suárez-Criado and Eduardo Bolea-Fernandez and Lana Abou-Zeid and Mathias Vandermeiren and Pablo Rodríguez-González and Jose Ignacio Garcia Alonso and Frank Vanhaecke},
url = {http://dx.doi.org/10.1039/D3JA00414G},
doi = {10.1039/D3JA00414G},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {J. Anal. At. Spectrom.},
volume = {39},
issue = {2},
pages = {592-600},
publisher = {The Royal Society of Chemistry},
abstract = {High-precision determination of the isotopic composition of mercury (Hg) is of paramount importance for unraveling its biogeochemical cycle and for identifying the origin of Hg in environmental compartments. Cold vapor generation multi-collector inductively coupled plasma-mass spectrometry (CVG-MC-ICP-MS) is the standard approach for such application. Cold vapor generation provides a high Hg introduction efficiency into the ICP, while chromatographic Hg isolation is not required as a result of the selective reaction between Hg2+ and SnCl2. For environmental or biota samples with low Hg concentrations, however, this approach still presents challenges and reliable measurements typically require a Hg concentration ≥1 μg L−1 in the solution analyzed. Recent improvements of MC-ICP-MS instrumentation, including the introduction of the so-called Jet interface and 1013 Ω Faraday cup amplifiers, enhance the signal-to-noise ratio. In this study, it was investigated to what extent this allows Hg isotopic analysis at lower concentration. Performance in Hg isotopic analysis was compared using two different sets of cones (standard vs. Jet), two plasma conditions (wet vs. dry) and two amplifier types (1011 Ω vs. 1013 Ω). Satisfactory accuracy and precision were achieved at a Hg concentration down to 0.1 μg L−1 in the solution measured when using Jet cones, dry plasma conditions, and the four available 1013 Ω amplifiers. The uncertainty expressed as 2SD for the δ202Hg values measured for the in-house standard solution was ±0.2‰ at 0.25 μg Hg L−1 and ± 0.3‰ at 0.1 μg Hg L−1. The method was subsequently applied to the analysis of real surface water samples contaminated with toxic metals.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Rua-Ibarz, Ana; Acker, Thibaut Van; Bolea-Fernandez, Eduardo; Boccongelli, Marina; Vanhaecke, Frank
A comparison of calibration strategies for quantitative laser ablation ICP-mass spectrometry (LA-ICP-MS) analysis of fused catalyst samples Journal Article
En: J. Anal. At. Spectrom., vol. 39, iss. 3, pp. 888-899, 2024.
@article{D3JA00271C,
title = {A comparison of calibration strategies for quantitative laser ablation ICP-mass spectrometry (LA-ICP-MS) analysis of fused catalyst samples},
author = {Ana Rua-Ibarz and Thibaut Van Acker and Eduardo Bolea-Fernandez and Marina Boccongelli and Frank Vanhaecke},
url = {http://dx.doi.org/10.1039/D3JA00271C},
doi = {10.1039/D3JA00271C},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {J. Anal. At. Spectrom.},
volume = {39},
issue = {3},
pages = {888-899},
publisher = {The Royal Society of Chemistry},
abstract = {In the field of petrochemistry, the quantitative determination of trace elements in catalysts is crucial for optimizing various types of processes. Catalyst poisoning, resulting from the presence of contaminants, can lead to decreased performance and efficiency, even when these are present at trace level only. Inductively coupled plasma-mass spectrometry (ICP-MS) is a powerful technique for trace elemental analysis, but its application to catalysts is challenging due to their physicochemical characteristics challenging straightforward dissolution. Laser ablation (LA) coupled to ICP-MS (LA-ICP-MS) has emerged as a valuable approach for direct analysis of solid samples. However, developing an appropriate calibration strategy for reliable quantitative LA-ICP-MS analysis of catalyst samples remains a challenge. In this work, different calibration strategies for quantitative LA-ICP-MS analysis of fused catalyst samples were evaluated. The traditional strategy relied on external calibration against certified reference materials (CRMs) combined with internal standardization and was considered the reference approach. When using this approach, the relative bias with respect to the reference value was found to be <15%. Two novel calibration strategies were introduced and compared: a so-called multi-signal calibration approach and a solution-based calibration approach. The multi-signal calibration strategy involved varying the laser repetition rate (20, 30, 40 and 50 Hz) or laser beam diameter (10, 12, 15 and 20 μm), allowing a calibration curve to be constructed by comparing the analytical signal intensity for a single solid CRM with that for the sample, thus partially overcoming the shortage of CRMs for quantitative LA-ICP-MS analysis. The solution-based calibration approach was used for quantitative multi-element analysis without the need for any solid standard and required only minor hardware modifications to accommodate the introduction of aqueous standard solutions for calibration. Various glass certified reference materials were used for method development, calibration, and validation purposes. Furthermore, two fused alumina catalyst samples (used in the context of petroleum refining processes) were successfully analyzed as a proof-of-concept application. For both the multi-signal (matrix-matched conditions) and the solution-based calibration approaches, the average relative bias between the experimentally determined and certified/reference concentrations varied between −9% and +7%.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Bolea-Fernandez, Eduardo; Rua-Ibarz, Ana; Anjos, Jorge Alves; Vanhaecke, Frank
En: Talanta, vol. 276, pp. 126210, 2024, ISSN: 0039-9140.
@article{BOLEAFERNANDEZ2024126210,
title = {Development and initial evaluation of a combustion-based sample introduction system for direct isotopic analysis of mercury in solid samples via multi-collector ICP-mass spectrometry},
author = {Eduardo Bolea-Fernandez and Ana Rua-Ibarz and Jorge Alves Anjos and Frank Vanhaecke},
url = {https://www.sciencedirect.com/science/article/pii/S0039914024005897},
doi = {https://doi.org/10.1016/j.talanta.2024.126210},
issn = {0039-9140},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Talanta},
volume = {276},
pages = {126210},
abstract = {High-precision isotopic analysis of mercury (Hg) using multi-collector ICP-mass spectrometry (MC-ICP-MS) is a powerful method for obtaining insight into the sources, pathways and sinks of this toxic metal. Modification of a commercially available mercury analyzer (Teledyne Leeman Labs, Hydra IIc – originally designed for quantification of Hg through sample combustion, collection of the Hg vapor on a gold amalgamator, subsequent controlled release of Hg and detection using cold vapor atomic absorption spectrometry CVAAS) enabled the system to be used for the direct high-precision Hg isotopic analysis of solid samples using MC-ICP-MS – i.e., without previous sample digestion and subsequent dilution. The changes made to the mercury analyzer did not compromise its (simultaneous) use for Hg quantification via CVAAS. The Hg vapor was mixed with a Tl-containing aerosol produced via pneumatic nebulization, creating wet plasma conditions, and enabling the use of Tl as an internal standard for correction of instrumental mass discrimination. Accurate and precise (0.10 ‰ 2SD, δ202Hg},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2023
Acker, Thibaut Van; Rua-Ibarz, Ana; Vanhaecke, Frank; Bolea-Fernandez, Eduardo
Laser Ablation for Nondestructive Sampling of Microplastics in Single-Particle ICP-Mass Spectrometry Journal Article
En: Anal. Chem., vol. 95, iss. 50, pp. 18579-18586, 2023.
@article{nokey,
title = {Laser Ablation for Nondestructive Sampling of Microplastics in Single-Particle ICP-Mass Spectrometry},
author = {Thibaut Van Acker and Ana Rua-Ibarz and Frank Vanhaecke and Eduardo Bolea-Fernandez},
url = {https://doi.org/10.1021/acs.analchem.3c04473},
doi = {10.1021/acs.analchem.3c04473},
year = {2023},
date = {2023-12-05},
urldate = {2023-12-05},
journal = {Anal. Chem.},
volume = {95},
issue = {50},
pages = {18579-18586},
abstract = {In this work, laser ablation (LA) was characterized as a method for sampling and introducing microplastic particles (MPs) into an inductively coupled plasma (ICP) for subsequent 13C+ monitoring using an ICP-mass spectrometer operated in single-event mode. MPs of different types (PS, PMMA, and PVC) and sizes (2–20 μm) were introduced intactly. The laser energy density did not affect the particle sampling across a wide range (0.25–6.00 J cm–2). Single-shot analysis separated clustered MPs (2–7 MPs per cluster) during the LA and particle transport processes, allowing the temporally resolved analysis of the individual constituting MPs. Line scanning showed superior performance when using a small laser beam diameter combined with a high repetition rate. The 13C+ signal intensity correlated linearly (R2 >0.9945) with the absolute C mass in a 2–10 μm size range, while the use of He in the collision-reaction cell (CRC) allowed extension of the linear range to 20 μm. The LA approach generated narrower 13C+ signal distributions than the traditional solution-based approach (dry versus wet plasma conditions) and proved successful for the analysis of a mixed suspension (containing four sizes of PS MPs in a 2–5 μm size range) and for sampling MPs from PVDF and glass microfiber filters, with the latter offering a lower background.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Sullivan, Kaj Vaughan; Assantuh, Yasmina; Grigoryan, Rosa; Costas-Rodríguez, Marta; Bolea-Fernandez, Eduardo; Lapauw, Bruno; Laecke, Steven Van; Vanhaecke, Frank
Serum Mg Isotopic Composition Reveals That Mg Dyshomeostasis Remains in Type 1 Diabetes despite the Resolution of Hypomagnesemia Journal Article
En: Int. J. Mol. Sci., vol. 24, iss. 21, pp. 15683, 2023.
@article{nokey,
title = {Serum Mg Isotopic Composition Reveals That Mg Dyshomeostasis Remains in Type 1 Diabetes despite the Resolution of Hypomagnesemia},
author = {Kaj Vaughan Sullivan and Yasmina Assantuh and Rosa Grigoryan and Marta Costas-Rodríguez and Eduardo Bolea-Fernandez and Bruno Lapauw and Steven Van Laecke and Frank Vanhaecke},
url = {https://doi.org/10.3390/ijms242115683},
doi = {10.3390/ijms242115683},
year = {2023},
date = {2023-10-27},
urldate = {2023-10-27},
journal = {Int. J. Mol. Sci.},
volume = {24},
issue = {21},
pages = {15683},
abstract = {Hypomagnesemia was historically prevalent in individuals with type 1 diabetes mellitus (T1DM), but contemporary results indicate an incidence comparable to that in the general population, likely due to improved treatment in recent decades, resulting in better glycemic control. However, a recent study found a significant difference between the serum Mg isotopic composition of T1DM individuals and controls, indicating that disruptions to Mg homeostasis persist. Significant deviations were also found in samples taken one year apart. To investigate whether the temporal variability in serum Mg isotopic composition is linked to the transient impact of administered insulin, Mg isotope ratios were determined in serum from 15 T1DM individuals before and one hour after insulin injection/meal consumption using multi-collector inductively coupled plasma-mass spectrometry. Consistent with results of the previous study, significant difference in the serum Mg isotopic composition was found between T1DM individuals and 10 sex-matched controls. However, the average difference between pre- and post-insulin injection/meal T1DM samples of 0.05 ± 0.13‰ (1SD) was not significant. No difference was observed for controls before (−0.12 ± 0.16‰) and after the meal (−0.10 ± 0.13‰) either, suggesting a lack of a postprandial Mg isotopic response within one hour of food consumption, and that the timing of the most recent meal may not require controlling for when determining serum Mg isotopic composition.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Aramendía, Maite; Leite, Diego; Resano, Javier; Resano, Martín; Billimoria, Kharmen; Goenaga-Infante, Heidi
En: Nanomaterials, vol. 13, iss. 17, pp. 2392, 2023.
@article{nokey,
title = {Isotope Dilution Analysis for Particle Mass Determination Using Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry: Application to Size Determination of Silver Nanoparticles},
author = {Maite Aramendía and Diego Leite and Javier Resano and Martín Resano and Kharmen Billimoria and Heidi Goenaga-Infante},
doi = {10.3390/nano13172392},
year = {2023},
date = {2023-08-22},
urldate = {2023-08-22},
journal = {Nanomaterials},
volume = {13},
issue = {17},
pages = {2392},
abstract = {This paper describes methodology based on the application of isotope dilution (ID) in
single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-ToFMS) mode
for the mass determination (and sizing) of silver nanoparticles (AgNPs). For this purpose, and
considering that the analytical signal in spICP-MS shows a transient nature, an isotope dilution
equation used for online work was adapted and used for the mass determination of individual NPs.
The method proposed measures NP isotope ratios in a particle-to-particle approach, which allows for
the characterization of NP mass (and size) distributions and not only the mean size of the distribution.
For the best results to be obtained, our method development (undertaken through the analysis of
the reference material NIST RM 8017) included the optimization of the working conditions for the
best precision and accuracy in isotope ratios of individual NPs, which had been only reported to
date with multicollector instruments. It is shown that the precision of the measurement of these
ratios is limited by the magnitude of the signals obtained for each NP in the mass analyzer (counting
statistics). However, the uncertainty obtained for the sizing of NPs in this approach can be improved
by careful method optimization, where the most important parameters are shown to be the selection
of the spike isotopic composition and concentration. Although only AgNPs were targeted in this
study, the method presented, with the corresponding adaptations, could be applied to NPs of any
other composition that include an element with different naturally available isotopes.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-ToFMS) mode
for the mass determination (and sizing) of silver nanoparticles (AgNPs). For this purpose, and
considering that the analytical signal in spICP-MS shows a transient nature, an isotope dilution
equation used for online work was adapted and used for the mass determination of individual NPs.
The method proposed measures NP isotope ratios in a particle-to-particle approach, which allows for
the characterization of NP mass (and size) distributions and not only the mean size of the distribution.
For the best results to be obtained, our method development (undertaken through the analysis of
the reference material NIST RM 8017) included the optimization of the working conditions for the
best precision and accuracy in isotope ratios of individual NPs, which had been only reported to
date with multicollector instruments. It is shown that the precision of the measurement of these
ratios is limited by the magnitude of the signals obtained for each NP in the mass analyzer (counting
statistics). However, the uncertainty obtained for the sizing of NPs in this approach can be improved
by careful method optimization, where the most important parameters are shown to be the selection
of the spike isotopic composition and concentration. Although only AgNPs were targeted in this
study, the method presented, with the corresponding adaptations, could be applied to NPs of any
other composition that include an element with different naturally available isotopes.
Bazo, Antonio; Aramendía, Maite; Nakadi, Flávio V.; Resano, Martín
En: Nanomaterials, vol. 13, no. 12, 2023, ISSN: 2079-4991.
@article{nano13121838,
title = {An Approach Based on an Increased Bandpass for Enabling the Use of Internal Standards in Single Particle ICP-MS: Application to AuNPs Characterization},
author = {Antonio Bazo and Maite Aramendía and Flávio V. Nakadi and Martín Resano},
url = {https://www.mdpi.com/2079-4991/13/12/1838},
doi = {10.3390/nano13121838},
issn = {2079-4991},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {Nanomaterials},
volume = {13},
number = {12},
abstract = {This paper proposes a novel approach to implement an internal standard (IS) correction in single particle inductively coupled plasma mass spectrometry (SP ICP-MS), as exemplified for the characterization of Au nanoparticles (NPs) in complex matrices. This approach is based on the use of the mass spectrometer (quadrupole) in bandpass mode, enhancing the sensitivity for the monitoring of AuNPs while also allowing for the detection of PtNPs in the same measurement run, such that they can serve as an internal standard. The performance of the method developed was proved for three different matrices: pure water, a 5 g L−1 NaCl water solution, and another water solution containing 2.5% (m/v) tetramethylammonium hydroxide (TMAH)/0.1% Triton X-100. It was observed that matrix-effects impacted both the sensitivity of the NPs and their transport efficiencies. To circumvent this problem, two methods were used to determine the TE: the particle size method for sizing and the dynamic mass flow method for the determination of the particle number concentration (PNC). This fact, together with the use of the IS, enabled us to attain accurate results in all cases, both for sizing and for the PNC determination. Additionally, the use of the bandpass mode provides additional flexibility for this characterization, as it is possible to easily tune the sensitivity achieved for each NP type to ensure that their distributions are sufficiently resolved.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
García-Poyo, M. Carmen; Bérail, Sylvain; Ronzani, Anne Laure; Rello, Luis; García-González, Elena; Nakadi, Flávio V.; Aramendía, Maite; Resano, Javier; Resano, Martín; Pécheyran, Christophe
En: J. Anal. At. Spectrom., vol. 38, iss. 1, pp. 229-242, 2023.
@article{D2JA00267A,
title = {Cu fractionation, isotopic analysis, and data processing via machine learning: new approaches for the diagnosis and follow up of Wilson's disease via ICP-MS},
author = {M. Carmen García-Poyo and Sylvain Bérail and Anne Laure Ronzani and Luis Rello and Elena García-González and Flávio V. Nakadi and Maite Aramendía and Javier Resano and Martín Resano and Christophe Pécheyran},
url = {http://dx.doi.org/10.1039/D2JA00267A},
doi = {10.1039/D2JA00267A},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {J. Anal. At. Spectrom.},
volume = {38},
issue = {1},
pages = {229-242},
publisher = {The Royal Society of Chemistry},
abstract = {Information about Cu fractionation and Cu isotopic composition can be paramount when investigating Wilson's disease (WD). This information can provide a better understanding of the metabolism of Cu. Most importantly, it may provide an easy way to diagnose and to follow the evolution of WD patients. For such purposes, protocols for Cu determination and Cu isotopic analysis via inductively coupled plasma mass spectrometry were investigated in this work, both in bulk serum and in the exchangeable copper (CuEXC) fractions. The CuEXC protocol provided satisfactory recovery values. Also, no significant mass fractionation during the whole analytical procedure (CuEXC production and/or Cu isolation) was detected. Analyses were carried out in controls (healthy persons), newborns, patients with hepatic disorders, and WD patients. While the results for Cu isotopic analysis are relevant (e.g., δ65Cu values were lower for both WD patients under chelating treatment and patients with hepatic problems in comparison with those values obtained for WD patients under Zn treatments, controls, and newborns) to comprehend Cu metabolism and to follow up the disease, the parameter that can help to better discern between WD patients and the rest of the patients tested (non-WD) was found to be the REC (relative exchangeable Cu). In this study, all the WD patients showed a REC higher than 17%, while the rest showed lower values. However, since establishing a universal threshold is complicated, machine learning was investigated to produce a model that can differentiate between WD and non-WD samples with excellent results (100% accuracy, albeit for a limited sample set). Most importantly, unlike other ML approaches, our model can also provide an uncertainty metric to indicate the reliability of the prediction, overall opening new ways to diagnose WD.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2022
Bazo, Antonio; Garde, Raúl; Garcia-Ruiz, Esperanza; Aramendía, Maite; Nakadi, Flávio V.; Resano, Martín
En: J. Anal. At. Spectrom., vol. 37, iss. 12, pp. 2517-2528, 2022.
@article{D2JA00245K,
title = {High-resolution continuum source graphite furnace molecular absorption spectrometry for the monitoring of Sr isotopes via SrF formation: a case study},
author = {Antonio Bazo and Raúl Garde and Esperanza Garcia-Ruiz and Maite Aramendía and Flávio V. Nakadi and Martín Resano},
url = {http://dx.doi.org/10.1039/D2JA00245K},
doi = {10.1039/D2JA00245K},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
journal = {J. Anal. At. Spectrom.},
volume = {37},
issue = {12},
pages = {2517-2528},
publisher = {The Royal Society of Chemistry},
abstract = {High-resolution continuum source graphite furnace molecular absorption spectrometry (HR CS GFMAS) can provide isotopic information under certain conditions, thus broadening its field of application. However, to date, only elements with two major stable isotopes have been monitored via this technique. In this work, the possibilities of HR CS GFMAS to determine isotope ratios of elements with more than two stable isotopes are evaluated for the first time. For this purpose, Sr was chosen as the analyte and SrF as the target species, so four different signals corresponding to four stable Sr isotopes (88Sr, 87Sr, 86Sr and 84Sr) should be distinguished. Nevertheless, due to the number of strontium isotopes, the shape of the peaks, and the resolution that the instrument exhibits in the spectral window, isotopic signals overlap, thus leading to potentially biased results. To circumvent this issue, a deconvolution protocol, consisting of measuring and correcting for the contribution of each isotope on the signals of the rest, was developed. These contributions were calculated as the signal ratio between the absorbance of the monoisotopic profile at the wavelengths where the maxima of other isotopes are expected and at its own maximum. Therefore, the interference can be simply subtracted from the net signal registered for the interfered isotope. The performance of this method was demonstrated for both naturally abundant and isotope-enriched Sr standards, paving the way for future applications in this field. Analysis of a real sample (tap water) spiked with a 84Sr solution is also demonstrated.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}